L’esperimento NA62 del CERN, cui partecipa anche l’INFN Istituto Nazionale di Fisica Nucleare, ha osservato per la prima volta un processo rarissimo che è previsto dalla teoria con grandissima precisione. La nuova misura, presentata il 24 settembre nel corso di un seminario al CERN, potrebbe aprire un’importante via verso la nuova fisica oltre il Modello Standard delle particelle elementari.
L’osservazione di NA62 riguarda il decadimento di un kaone carico (K+) in un pione carico e due neutrini. Questo decadimento è tra i processi più rari mai osservati nella cosiddetta fisica del sapore: secondo il Modello Standard, infatti, meno di un kaone carico su 10 miliardi decade in questo modo. NA62 ha misurato il decadimento con una significatività statistica di 5 sigma (5σ): questo significa che la probabilità che gli eventi osservati siano dovuti semplicemente a fluttuazioni statistiche del fondo è di 2×10-7.
“Questo risultato rappresenta il culmine di un progetto iniziato più di un decennio fa, ed è frutto di un lungo e rigoroso lavoro”, commenta Giuseppe Ruggiero dell’INFN e dell’Università di Firenze, che guida la Collaborazione Scientifica dell’esperimento NA62. “Cercare processi in natura che hanno una probabilità di accadere dell’ordine di 10-11 è affascinante e stimolante, ma è anche estremamente impegnativo: con questa misura abbiamo consegnato alla comunità scientifica un risultato tanto atteso, che per noi rappresenta anche una ricompensa straordinaria per i nostri sforzi”.
Ma perché in fisica si cercano processi così rari? In effetti, questo è il punto chiave dello studio di questo decadimento: diversi modelli teorici suggeriscono che questo decadimento sia estremamente sensibile alle deviazioni dalla previsione del Modello Standard, rendendolo, quindi, uno dei processi più interessanti da studiare per cercare prove di nuova fisica al di là del Modello Standard.
“NA62 è riuscito a misurare la frequenza di questo rarissimo decadimento rispetto a tutti i possibili decadimenti dei kaoni carichi con una precisione del 25%: è la misura più precisa mai realizzata fino ad oggi, e il risultato è intrigante perché il tasso di decadimento osservato (=(13.0−2.9+3.3)×10−11) è superiore alle previsioni e la probabilità di osservare una discrepanza di questa entità a causa di una fluttuazione statistica è del 5%. Questo, in fisica, significa che c’è compatibilità con il Modello Standard, anche se non perfetta”,
sottolinea Renato Fiorenza della Scuola Superiore Meridionale e della Sezione INFN di Napoli, tra i principali analisti.
“Una eventuale discrepanza tra misura e teoria potrebbe trovare la sua ragione nella presenza di nuove particelle che aumentano la probabilità del decadimento, ma sono necessari ulteriori dati per testare questa ipotesi”, spiega Francesco Brizioli della Sezione INFN di Perugia (attualmente CERN), uno dei due coordinatori dell’analisi dei dati. “Con la raccolta di dati in corso, nei prossimi anni NA62 potrebbe essere in grado di confermare l’esistenza di contributi al decadimento provenienti da nuova fisica, oppure imporre forti vincoli sull’entità di tali contributi.
“Anche se trovare indizi di nuova fisica richiederà ancora più dati, questo risultato rappresenta un grande passo in avanti e rafforza ulteriormente l’interesse per queste ricerche e l’attesa per i futuri risultati”, spiega Karim Massri dell’Università di Lancaster, coordinatore della fisica di NA62.
L’esperimento NA62 è stato progettato e costruito appositamente per misurare il rarissimo decadimento del kaone K+ →+. I kaoni sono prodotti da un fascio di protoni ad alta intensità, fornito dal Super Proton Synchrotron (SPS, uno degli acceleratori del CERN), che collide con un bersaglio fisso. In questo modo si genera un fascio secondario di quasi un miliardo di particelle al secondo che si dirige verso il rivelatore NA62: circa il 6% di queste particelle sono kaoni carichi. NA62 rivela precisamente i prodotti di decadimento dei kaoni, identificando e misurando tutte le particelle prodotte, ad eccezione dei neutrini che risultano come energia mancante.
I dati raccolti nel 2021 e nel 2022 sono stati cruciali per questo risultato, e sono stati ottenuti grazie a una serie di aggiornamenti apportati all’apparato sperimentale di NA62, con nuovi e potenziati rivelatori, che hanno permesso il funzionamento a intensità del fascio più elevate del 30%. Questi aggiornamenti hardware combinati con miglioramenti delle tecniche di analisi dei dati hanno fatto sì che la raccolta dei candidati del segnale cercato fosse il 50% più veloce di prima.
Questa misura si basa sulla capacità di identificare un decadimento ogni dieci miliardi di decadimenti osservati. Non solo: i neutrini nel decadimento non possono essere rivelati, il che rende ancora più difficile essere certi di aver identificato il processo cercato e non uno degli altri 9.999.999.999 decadimenti che possono imitare il segnale se qualche prodotto di decadimento viene non rivelato o confuso.
“Sono entusiasta di aver avuto la possibilità di presentare alla comunità scientifica del CERN, a nome dell’intera collaborazione NA62, questo nuovo importante risultato, un
risultato che sembrava quasi impossibile da realizzare”, commenta Joel Swallow dei Laboratori Nazionali di Frascati dell’INFN, uno dei due coordinatori del lavoro di analisi dei dati.
“L’importante risultato è stato reso possibile grazie alla scrupolosa e precisa analisi condotta da giovani e brillanti ricercatori e ricercatrici dell’INFN e studentesse e studenti di dottorato. La comunità scientifica italiana ha avuto un ruolo primario in questa difficile misura”, commenta Antonella Antonelli dei Laboratori Nazionali di Frascati dell’INFN, coordinatrice dei gruppi INFN che partecipano all’esperimento NA62.
La collaborazione NA62 coinvolge circa 200 ricercatrici e ricercatori provenienti da Europa, Stati Uniti, Canada, Messico e Russia. L’impegno della comunità italiana, coordinata dall’INFN, si distingue con circa un terzo dei partecipanti, provenienti dai Laboratori Nazionali di Frascati dell’INFN e dalle Sezioni INFN e dalle Università di Ferrara, Firenze, Napoli, Perugia, Pisa, Roma Sapienza, Roma Tor Vergata e Torino. I ricercatori e le ricercatrici dell’INFN hanno ruoli di responsabilità sia nella realizzazione e nella conduzione del rivelatore (con lo sviluppo del sistema avanzato di tracciamento del fascio, il sistema di veto per i fotoni e particelle cariche, e il sistema di identificazione dei pioni), sia per il complesso sistema di acquisizione dati dell’esperimento.
Post correlati
Cristina Roccati: Rovigo celebra la prima studentessa fuori sede
Aprirà il 6 dicembre prossimo a Palazzo Roncale di...Francesco Radici: il cielo dell’altotevere sta girando il mondo
Il cielo “stellato” dell’altotevere sul tetto del mondo. Come...“StarLight”: evento inclusivo per scoprire il cielo invernale
L’APS “StarLight, un planetario tra le dita” organizza il...